Contactor, 4p, 20A/AC1 Part no. DILMP20(24V60HZ) Article no. 276961 Catalog No. XTCF020B00B6 **Delivery program** | Product range Application Subrange Utilization category Connection technique Number of poles Rated operational current AC-1 Conventional free air thermal current, 3 pole, 50 - 60 Hz at 40 °C Contactors Contactors for 4 pole electric consumers Contactors up to 200 A, 4 pole AC-1: Non-inductive or slightly inductive loads, resistance furnaces NAC-3: Normal AC induction motors: starting, switch off during running Screw terminals 4 pole 4 pole Lh = I A 22 | Donvory program | | | | |--|---|----------------|---|--| | Subrange Contactors up to 200 A, 4 pole Utilization category AC-1: Non-inductive or slightly inductive loads, resistance furnaces NAC-3: Normal AC induction motors: starting, switch off during running Connection technique Screw terminals 4 pole Rated operational current AC-1 Conventional free air thermal current, 3 pole, 50 - 60 Hz | Product range | | | Contactors | | Utilization category AC-1: Non-inductive or slightly inductive loads, resistance furnaces NAC-3: Normal AC induction motors: starting, switch off during running Connection technique Screw terminals 4 pole Rated operational current AC-1 Conventional free air thermal current, 3 pole, 50 - 60 Hz | Application | | | Contactors for 4 pole electric consumers | | NAC-3: Normal AC induction motors: starting, switch off during running Connection technique Screw terminals Aumber of poles Rated operational current AC-1 Conventional free air thermal current, 3 pole, 50 - 60 Hz | Subrange | | | Contactors up to 200 A, 4 pole | | Number of poles Rated operational current AC-1 Conventional free air thermal current, 3 pole, 50 - 60 Hz | Utilization category | | | | | Rated operational current AC-1 Conventional free air thermal current, 3 pole, 50 - 60 Hz | Connection technique | | | Screw terminals | | AC-1 Conventional free air thermal current, 3 pole, 50 - 60 Hz | Number of poles | | | 4 pole | | Conventional free air thermal current, 3 pole, 50 - 60 Hz | Rated operational current | | | | | | AC-1 | | | | | at 40 °C I _{th} =I _e A 22 | Conventional free air thermal current, 3 pole, 50 - 60 Hz | | | | | | at 40 °C | $I_{th} = I_e$ | Α | 22 | | at 50 °C | at 50 °C | $I_{th} = I_e$ | Α | 21 | | at 60 °C $I_{th} = I_e$ A 20 | at 60 °C | $I_{th} = I_e$ | Α | 20 | | Contact sequence A1 | Contact sequence | | | A1 1 3 5 7
A2 2 4 6 8 | | For use with DILM32-XHI(C) DILA-XHI(V)(C) | For use with | | | | | Actuating voltage 24 V 60 Hz | Actuating voltage | | | 24 V 60 Hz | | Voltage AC/DC AC operation | Voltage AC/DC | | | AC operation | | Instructions Contacts to EN 50012. | Instructions | | | Contacts to EN 50012. | #### **Technical data** General | General | | | | |---|--------------|-------------------|---| | Standards | | | IEC/EN 60947, VDE 0660, UL, CSA | | Lifespan, mechanical | | | | | AC operated | Operations | x 10 ⁶ | 10 | | DC operated | Operations | x 10 ⁶ | 10 | | Operating frequency, mechanical | | | | | AC operated | Operations/h | | 5000 | | DC operated | Operations/h | | 5000 | | Climatic proofing | | | Damp heat, constant, to IEC 60068-2-3
Damp heat, cyclic, to IEC 60068-2-30 | | Ambient temperature | | | | | Open | | °C | -25 - +60 | | Enclosed | | °C | - 25 - 40 | | Storage | | °C | - 40 - 80 | | Mounting position | | | | | Mounting position | | | 30° | | Mechanical shock resistance (IEC/EN 60068-2-27) | | | | | Half-sinusoidal shock, 10 ms | | | | | Main contacts | | | | | N/O contact | | g | 10 | | | | | | | A 111 | | | | |---|------------------|-----------------|--------------------------------------| | Auxiliary contacts | | a . | 7 | | N/O contact | | g | 7 | | N/C contact | | g | 5 | | Degree of Protection | | | IP20 | | Protection against direct contact when actuated from front (EN 50274) | | | Finger and back-of-hand proof | | Terminal capacity main cable | | | | | Solid | | mm ² | 1 x (0.75 - 4)
2 x (0.75 - 2.5) | | Flexible with ferrule | | mm ² | 1 x (0.75 - 2.5)
2 x (0.75 - 2.5) | | Solid or stranded | | AWG | 18 - 14 | | Terminal capacity control circuit cables | | | | | Solid | | mm ² | 1 x (0.75 - 4)
2 x (0.75 - 2.5) | | Flexible with ferrule | | mm ² | 1 x (0.75 - 2.5)
2 x (0.75 - 2.5) | | Solid or stranded | | AWG | 18 - 14 | | Main cable connection screw/bolt | | | M3.5 | | Tightening torque | | Nm | 1.2 | | Control circuit cable connection screw/bolt | | | M3.5 | | Tightening torque | | Nm | 1.2 | | Tool | | | | | Main cable | | | | | Pozidriv screwdriver | | Size | 2 | | Standard screwdriver | | mm | 0.8 x 5.5 | | | | | 1 x 6 | | Control circuit cables | | | | | Pozidriv screwdriver | | Size | 2 | | Standard screwdriver | | mm | 0.8 x 5.5 | | Main conducting paths | | | 1x6 | | Rated impulse withstand voltage | U _{imp} | V AC | 8000 | | Overvoltage category/pollution degree | - imp | | III/3 | | Rated insulation voltage | Ui | V AC | 690 | | Rated operational voltage | U _e | V AC | 690 | | Safe isolation to EN 61140 | · · | | | | between coil and contacts | | V AC | 400 | | between the contacts | | V AC | 400 | | Making capacity (cos ϕ) | Up to 690 V | A | 144 | | | Op to 090 V | A | According to IEC/EN 60947 | | Breaking capacity | | Δ. | 100 | | 220 V 230 V | | A | 120 | | 380 V 400 V | | A | 120 | | 500 V | | A | 100 | | 660 V 690 V | | Α | 70 | | Short-circuit rating | | | | | Short-circuit protection maximum fuse | | | | | Type "2" coordination | | | | | 400 V | gG/gL 500 V | | 20 | | 690 V | | Α | 20 | | | gG/gL 690 V | | | | Type "1" coordination | | | | | 400 V | gG/gL 500 V | A | 35 | | 400 V
690 V | | A | 35
25 | | 400 V
690 V
AC | gG/gL 500 V | A | | | 400 V
690 V
AC
AC-1 | gG/gL 500 V | A | | | 400 V 690 V AC AC-1 Rated operational current | gG/gL 500 V | A | | | 400 V
690 V
AC
AC-1 | gG/gL 500 V | A | | | at 40 °C | $I_{th} = I_e$ | Α | 22 | |---|-----------------|------------------|-----------| | at 50 °C | $I_{th} = I_e$ | Α | 21 | | at 60 °C | $I_{th} = I_e$ | Α | 20 | | enclosed | I _{th} | Α | 18 | | Conventional free air thermal current, 1 pole | | | | | open | I _{th} | Α | 60 | | enclosed | I _{th} | Α | 54 | | AC-3 | | | | | Rated operational current | | | | | Open, 3-pole: 50 – 60 Hz | | | | | 220 V 230 V | I _e | Α | 12 | | 240 V | I _e | A | 12 | | 380 V 400 V | I _e | Α | 12 | | 415 V | I _e | A | 12 | | 440V | I _e | A | 12 | | 500 V | | A | 10 | | | l _e | | | | 660 V 690 V | l _e | Α | 7 | | Motor rating | P | kWh | | | 220 V 230 V | P | kW | 3.5 | | 240V | P | kW | 4 | | 380 V 400 V | P | kW | 5.5 | | 415 V | P | kW | 7 | | 440 V | P | kW | 7.5 | | 500 V | P | kW | 7 | | 660 V 690 V | P | kW | 6.5 | | Rated operational current, open | | | | | DC-1 | | | | | 60 V | I _e | A | 22 | | 110 V | I _e | Α | 22 | | 220 V | I _e | Α | 6 | | 440 V | I _e | A | 1.3 | | DC-3 | ·e | ,, | | | 60 V | I _e | Α | 20 | | 110 V | | A | 20 | | | l _e | | | | 220 V | l _e | A | 1.5 | | 440 V | l _e | Α | 0.2 | | DC-5 | | | | | 60 V | l _e | A | 20 | | 110 V | l _e | Α | 20 | | 220 V | l _e | Α | 1.5 | | 440 V | l _e | Α | 0.2 | | Current heat loss | | 101 | 47 | | 3-pole at l _{th} | | W | 4.7 | | Impedance per pole | | mΩ | 2.5 | | Magnet systems Voltage tolerance | | | | | AC operated 50 Hz | Pick-up | x U _c | 0.8 - 1.1 | | AC operated 50/60 Hz | | x U _c | 0.8 - 1.1 | | Drop-out voltage AC operated | Drop-out | x U _c | 0.4 - 0.6 | | | | | | | DC operated | Pick-up | x U _c | 0.8 - 1.1 | | DC operated | Drop-out | x U _c | 0.2 - 0.6 | | Power consumption of the coil in a cold state and 1.0 x $\ensuremath{\text{U}_{c}}$ | | | | | AC operated 50/60 Hz | Pick-up | VA | 24 | |--|---------|------|---------| | AC operated 50/60 Hz | Pick-up | W | 19 | | AC operated 50/60 Hz | Sealing | VA | 4 | | AC operated 50/60 Hz | Sealing | W | 1.2 | | DC operated | Pick-up | W | 4,5 | | DC operated | Sealing | W | 4.5 | | Duty factor | | % DF | 100 | | Changeover time at 100 % U_{C} (recommended value) | | | | | Main contacts | | | | | AC operated | | | | | Closing delay | | ms | 15 - 21 | | Opening delay | | ms | 9 - 18 | | DC operated | | ms | | | Closing delay | | ms | 31 | | Opening delay | | ms | 12 | | Arcing time | | ms | 10 | | Permissible residual current with actuation of A1 - A2 by the electronics (with 0 signal). | | mA | ≦1 | # Design verification as per IEC/EN 61439 | Technical data for design verification | | | | |--|-------------------|----|--| | Rated operational current for specified heat dissipation | In | Α | 22 | | Heat dissipation per pole, current-dependent | P _{vid} | W | 1 | | Equipment heat dissipation, current-dependent | P _{vid} | W | 3 | | Static heat dissipation, non-current-dependent | P _{vs} | W | 1.4 | | Heat dissipation capacity | P _{diss} | W | 0 | | Operating ambient temperature min. | | °C | -25 | | Operating ambient temperature max. | | °C | 60 | | IEC/EN 61439 design verification | | | | | 10.2 Strength of materials and parts | | | | | 10.2.2 Corrosion resistance | | | Meets the product standard's requirements. | | 10.2.3.1 Verification of thermal stability of enclosures | | | Meets the product standard's requirements. | | 10.2.3.2 Verification of resistance of insulating materials to normal heat | | | Meets the product standard's requirements. | | 10.2.3.3 Verification of resistance of insulating materials to abnormal heat and fire due to internal electric effects | | | Meets the product standard's requirements. | | 10.2.4 Resistance to ultra-violet (UV) radiation | | | Meets the product standard's requirements. | | 10.2.5 Lifting | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.2.6 Mechanical impact | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.2.7 Inscriptions | | | Meets the product standard's requirements. | | 10.3 Degree of protection of ASSEMBLIES | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.4 Clearances and creepage distances | | | Meets the product standard's requirements. | | 10.5 Protection against electric shock | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.6 Incorporation of switching devices and components | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.7 Internal electrical circuits and connections | | | Is the panel builder's responsibility. | | 10.8 Connections for external conductors | | | Is the panel builder's responsibility. | | 10.9 Insulation properties | | | | | 10.9.2 Power-frequency electric strength | | | Is the panel builder's responsibility. | | 10.9.3 Impulse withstand voltage | | | Is the panel builder's responsibility. | | 10.9.4 Testing of enclosures made of insulating material | | | Is the panel builder's responsibility. | | 10.10 Temperature rise | | | The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices. | | 10.11 Short-circuit rating | | | Is the panel builder's responsibility. The specifications for the switch
gear must be observed. $\label{eq:constraint}$ | | 10.12 Electromagnetic compatibility | | | Is the panel builder's responsibility. The specifications for the switch
gear must be observed. $\label{eq:constraint}$ | | 10.13 Mechanical function | | | The device meets the requirements, provided the information in the instruction leaflet (IL) is observed. | ## **Technical data ETIM 6.0** | Low-voltage industrial components (EG000017) / Power contactor, AC switching (EC000066) | | | | | |--|--|----|------------------|--| | Electric engineering, automation, process control engineering / Low-voltage switch technology / Contactor (LV) / Power contactor, AC switching (ecl@ss8.1-27-37-10-03 [AAB718012]) | | | | | | Rated control supply voltage Us at AC 50HZ | | V | 0 - 0 | | | Rated control supply voltage Us at AC 60HZ | | V | 24 - 24 | | | Rated control supply voltage Us at DC | | V | 0 - 0 | | | Voltage type for actuating | | | AC | | | Rated operation current le at AC-1, 400 V | | Α | 22 | | | Rated operation current le at AC-3, 400 V | | Α | 12 | | | Rated operation power at AC-3, 400 V | | kW | 5.5 | | | Rated operation current le at AC-4, 400 V | | Α | 10 | | | Rated operation power le at AC-4, 400 V | | kW | 4.5 | | | Modular version | | | No | | | Number of auxiliary contacts as normally open contact | | | 0 | | | Number of auxiliary contacts as normally closed contact | | | 0 | | | Type of electrical connection of main circuit | | | Screw connection | | | Number of normally closed contacts as main contact | | | 0 | | | Number of main contacts as normally open contact | | | 4 | | ## **Approvals** | IEC/EN 60947-4-1; UL 508; CSA-C22.2 No. 14-05; CE marking | |---| | E29096 | | NLDX | | 012528 | | 2411-03, 3211-04 | | UL listed, CSA certified | | No | | | Switching conditions for 4 pole, non-motor loads Operating characteristics Non inductive and slightly inductive loads Electrical characteristics Switch on: 1 x rated operational current Switch off: 1 x rated operational current Utilization category 100 % AC-1 Typical examples of application Electric heat ## **Dimensions** **Additional product information (links)** | Switchgear of Power Factor Correction Systems | http://www.moeller.net/binary/ver_techpapers/ver934en.pdf | |--|---| | X-Start - Modern Switching Installations Efficiently Fitted and Wired Securely | http://www.moeller.net/binary/ver_techpapers/ver938en.pdf | | Mirror Contacts for Highly-Reliable Information Relating to Safety-Related Control Functions | http://www.moeller.net/binary/ver_techpapers/ver944en.pdf | | Effect of the Cabel Capacitance of Long Control Cables on the Actuation of Contactors | http://www.moeller.net/binary/ver_techpapers/ver949en.pdf | | Motor starters and "Special Purpose Ratings" for the North American market | http://www.moeller.net/binary/ver_techpapers/ver953en.pdf | | Switchgear for Luminaires | http://www.moeller.net/binary/ver_techpapers/ver955en.pdf | | Standard Compliant and Functionally Safe Engineering Design with Mechanical Auxiliary Contacts | http://www.moeller.net/binary/ver_techpapers/ver956en.pdf | | The Interaction of Contactors with PLCs | http://www.moeller.net/binary/ver_techpapers/ver957en.pdf | | Busbar Component Adapters for modern Industrial control panels | http://www.moeller.net/binary/ver_techpapers/ver960en.pdf |